高中生物教材知识点
2020-10-11 来源:不详 浏览次数:次必修一教材知识点
.细胞是生物体结构和功能的基本单位。
2.生物大分子(如核酸、蛋白质等的研究已经相当深入,但是这些大分子并没有生命。生命和细胞难解难分。
3.生物圈中存在着众多的单细胞生物,如细菌、单细胞藻类、单细胞动物等,单个细胞就能完成各种生命活动。许多植物和动物是多细胞生物,它们依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动。例如,以细胞代谢为基础的生物与环境之间物质和能量的交换;以细胞增殖分化为基础的生长发育;以细胞内基因的传递和变化为基础的遗传与变异,等等。
4.系统:是指彼此间相互作用、相互依赖的组分有规律地结合而形成的整体。一个蛋白质分子可以(可以、不可以)看成一个系统。
5.氨基酸是组成蛋白质的基本单位。在生物体中组成蛋白质的氨基酸约有20种。
6.各种氨基酸之间的区别在于R基的不同,如甘氨酸上的R基是一个氢原子,丙氨酸上的R基是一个甲基。
7.有8种氨基酸是人体细胞不能合成的(婴儿有9种,比成人多的一种是组氨酸),必须从外界环境中直接获取,这些氨基酸叫做必需氨基酸,如赖氨酸、苯丙氨酸等。另外2种氨基酸是人体细胞能够合成的,叫做非必需氨基酸。
8.与生活的联系:在鸡蛋清中加入一些食盐,就会看到白色的絮状物,这是在食盐的作用下析出的蛋白质。兑水稀释后,你会发现絮状物消失。在上述过程中,蛋白质结构未发生变化。但是把鸡蛋煮熟后,蛋白质发生变性,就不能恢复原来的状态了。原因是高温使蛋白质分子的空间结构变得伸展、松散,容易被蛋白酶水解。因此,吃熟鸡蛋容易消化。
9.许多蛋白质是构成细胞和生物体结构的重要物质,称为结构蛋白。例如,羽毛、肌肉、头发、蛛丝等的成分主要是蛋白质。细胞内的化学反应离不开酶的催化。绝大多数酶都是蛋白质。有些蛋白质具有运输载体的功能(血红蛋白能运输氧)。有些蛋白质起信息传递作用,能够调节机体的生命活动,如胰岛素。有些蛋白质有免疫功能。人体内的抗体是蛋白质,可以帮助人体抵御病菌和病毒等抗原的侵害。
0.DNA主要分布在细胞核,RNA大部分存在于细胞质。甲基绿和吡罗红两种染色剂对DNA和RNA的亲和力不同,甲基绿使DNA呈现绿色,吡罗红使RNA呈现红色。利用甲基绿、吡罗红混合染色剂将细胞染色,可以显示DNA和RNA在细胞中的分布。盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA和蛋白质分离,有利于DNA与染色剂结合。
.组成DNA的脱氧核苷酸虽然只有4种,但是如果数量不限,在连成长链时,排列顺序就是极其多样化的,它所贮存的遗传信息的容量自然就非常大了。部分病毒的遗传信息,直接贮存在RNA中,如HIV,SARS病毒等。
2.肥肉的主要成分是脂肪;食用植物油是从油料作物中提取的,其主要成分是脂肪。脂肪是脂质的一种。脂质存在于所有细胞中,是组成细胞和生物体的重要有机化合物。与糖类相似,组成脂质的化学元素主要是C、H、O,有些脂质还含有N、P。所不同的是脂质分子中氧的含量远远少于糖类,而氢的含量更多。常见的脂质有脂肪、磷脂和固醇等,它们的分子结构差异很大,通常都不溶于水,而溶于脂溶性有机溶剂。
3.脂肪不仅是储能物质,还是一种很好的绝热体。生活在海洋中的大型哺乳动物如鲸、海豹等,皮下有厚厚的脂肪层,起到保温的作用。生活在南极寒冷环境中的企鹅,体内脂肪可厚达4cm。分布在内脏器官周围的脂肪还具有缓冲减压的作用,可以保护内脏器官。
4.磷脂:磷脂是构成细胞膜的重要成分,也是构成多种细胞器膜的重要成分。
5.固醇:固醇类物质包括胆固醇、性激素和维生素D等。胆固醇是构成动物细胞膜的重要成分,在人体内还参与血液中脂质的运输;性激素能促进人和动物生殖器官的发育以及生殖细胞的形成;维生素D能有效地促进人和动物肠道对钙和磷的吸收。
6.生物大分子以碳链为骨架。多糖、蛋白质、核酸等都是生物大分子,都是由许多基本的组成单位连接而成的,这些基本单位称为单体,这些生物大分子又称为单体的多聚体。例如,组成多糖的单体是单糖,组成蛋白质的单体是氨基酸,组成核酸的单体是核苷酸。每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。正是由于碳原子在组成生物大分子中的重要作用,科学家才说“碳是生命的核心元素”,“没有碳,就没有生命”。
7.当你烘干一粒小麦种子,然后点燃烧尽,最终会得到一些灰白色的灰烬,这些灰烬就是小麦种子里的无机盐。人和动物体内也含有无机盐。细胞中大多数无机盐以离子的形式存在。
8.与生活的联系:患急性肠炎的病人脱水时需要及时补充水分,同时也需要补充体内丢失的无机盐,因此,输入葡萄糖盐水是常见的治疗方法。大量出汗会排出过多的无机盐,导致体内的水盐平衡和酸碱平衡失调,这时应多喝淡盐水。
9.查找资料,了解某一种植物(如小麦)生长发育需要哪些无机盐。设计实验,证明某一种或某几种无机盐是这种植物生长发育所必需的。对照组:给植物提供完全营养液,实验组:给植物提供缺某种无机盐的完全营养液
20.细胞作为一个基本的生命系统,它的边界就是细胞膜。
2.相关信息:在发育成熟过程中,哺乳动物红细胞的核逐渐退化,并从细胞中排出,为能携带氧的血红蛋白腾出空间。人的红细胞只能存活20d左右。
22.与生活的联系:癌细胞的恶性增殖和转移与癌细胞膜成分的改变有关。细胞在癌变的过程中,细胞膜的成分发生改变,有的产生甲胎蛋白(AFP)、癌胚抗原(CEA)等物质。因此,在检查癌症的验血报告单上,有AFP、CEA等检测项目。如果这些指标超过正常值,应做进一步检查,以确定体内是否出现了癌细胞。
23.细胞膜的功能:
将细胞与外界分隔开:在原始海洋中,膜的出现是生命起源过程中至关重要的阶段,它将生命物质与外界环境分隔开,产生了原始的细胞,并成为相对独立的系统。细胞膜保障了细胞内部环境的相对稳定。
控制物质进出细胞:细胞膜的控制作用是相对的,环境中一些对细胞有害的物质有可能进入;有些病毒、病菌也能侵入细胞,使生物体患病。
进行细胞间的信息交流:在多细胞生物体内,各个细胞都不是孤立存在的,它们之间必须保持功能的协调,才能使生物体健康地生存。这种协调性的实现不仅依赖于物质和能量的交换,也有赖于信息的交流。
24.细胞分泌的化学物质(如激素),随血液到达全身各处,与靶细胞的细胞膜表面的受体结合,将信息传递给靶细胞。相邻两个细胞的细胞膜接触,信息从一个细胞传递给另一个细胞。例如,精子和卵细胞之间的识别和结合。相邻两个细胞之间形成通道,携带信息的物质通过通道进入另一个细胞。例如,高等植物细胞之间通过胞间连丝相互连接,也有信息交流的作用。
25.内质网是由膜连接而成的网状结构,是细胞内蛋白质合成和加工,以及脂质的“车间”。
26.高尔基体主要是对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”。
27.核糖体有的附着在内质网上,有的游离分布在细胞质中,是“生产蛋白质的机器”。溶酶体是“消化车间”,内部含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒和病菌。被溶酶体分解后的产物,如果是对细胞有用的物质,细胞可以再利用,废物则被排出细胞外。
28.液泡主要存在于植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。中心体见于动物和某些低等植物的细胞,由两个互相垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关。
29.相关信息:科学家发现有40种以上的疾病是由于溶酶体内缺乏某种酶产生的,如矿工中常见的职业病——硅肺。当肺部吸入硅尘(SiO2)后,硅尘被吞噬细胞吞噬,吞噬细胞中的溶酶体缺乏分解硅尘的酶,而硅尘却能破坏溶酶体膜,使其中的水解酶释放出来,破坏细胞结构,使细胞死亡,最终导致肺的功能受损。
30.在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质,由水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等组成。在细胞质基质中也进行着多种化学反应。
3.真核细胞中有维持细胞形态、保持细胞内部结构有序性的细胞骨架。细胞骨架是由蛋白质纤维组成的网架结构,与细胞运动、分裂、分化以及物质运输、能量转换、信息传递等生命活动密切相关。
32.高尔基体在细胞的物质运输中起重要的交通枢纽作用。
33.在细胞内合成后,分泌到细胞外起作用的蛋白质,叫做分泌蛋白,如消化酶、抗体和一部分激素。
34.除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。对细胞核功能的较为全面的阐述应该是:细胞核是遗传的信息库,是细胞代谢和遗传的控制中心。
35.模型方法:模型是人们为了某种特定目的而对认识对象所作的一种简化的概括性的描述。模型的形式很多,包括物理模型、概念模型、数学模型等。以实物或画图形式直观地表达认识对象的特征,这种模型就是物理模型。沃森和克里克制作的著名的DNA双螺旋结构模型,就是物理模型。
36.细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。
37.知识迁移:新宰的畜、禽,如果马上把肉做熟了吃,肉老而口味不好,过一段时间再煮,肉反而鲜嫩。这可能与肌细胞内哪一种细胞器的作用有关?溶酶体
38.技能应用:用光学显微镜观察未经染色的动物细胞,在明亮的视野下很难看清细胞的边缘和细胞核。如果把视野调暗,可以看得比较清晰。应该怎样操作?一是转动反光镜使进光量减少;二是选择小的光圈,减少进光量
39.在细胞膜的外表,有一层由细胞膜上的蛋白质与糖类结合形成的糖蛋白,叫做糖被。它在细胞生命活动中具有重要的功能。例如,消化道和呼吸道上皮细胞表面的糖蛋白有保护和润滑作用;糖被与细胞表面的识别有密切关系。除糖蛋白外,细胞膜表面还有糖类和脂质分子结合成的糖脂。
40.用台盼蓝染色,死的动物细胞会被染成蓝色,而活的动物细胞不着色,从而判断细胞是否死亡。
4.物质跨膜运输并不都是顺相对含量梯度的,而且细胞对于物质的输入和输出有选择性。可以说细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子则不能通过。生物膜的这一特性,是活细胞的一个重要特征。
42.相关信息:除了水、氧、二氧化碳外,甘油、乙醇、苯等物质也可以通过自由扩散进出细胞。
43.将两种溶液连通时,溶质分子会从高浓度一侧向低浓度一侧扩散。往清水中滴一滴蓝墨水,清水很快就变为蓝色,这就是扩散。物质进出细胞,既有顺浓度梯度的扩散,统称为被动运输;也有逆浓度梯度的运输,称为主动运输。此外还有其他运输方式。
44.水分子进出细胞取决于细胞内外溶液的浓度差。氧和二氧化碳也是如此。这些物质的分子很小,很容易自由地通过细胞膜的磷脂双分子层。
45.当肺泡内氧的浓度大于肺泡细胞内部氧的浓度时,氧便通过扩散作用进入肺泡细胞内部。像这样,物质通过简单的扩散作用进出细胞,叫做自由扩散。
46.离子和一些较大的分子如葡萄糖等,不能自由地通过细胞膜。镶嵌在膜上的一些特殊的蛋白质,能够协助葡萄糖等一些物质顺浓度梯度跨膜运输。进出细胞的物质借助载体蛋白的扩散,叫做协助扩散。自由扩散和协助扩散统称为被动运输。
47.细胞通过被动运输吸收物质时,虽然不需要消耗细胞的能量,但需要膜两侧的浓度差。而一般情况下,植物根系所处的土壤溶液中,植物需要的很多矿质元素离子的浓度总是低于细胞液的浓度。
Na+、K+和Ca2+等离子,都不能自由地通过磷脂双分子层,它们从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。主动运输普遍存在于动植物和微生物细胞中,保证了活细胞能够按照生命活动的需求,主动选择吸收所需要的营养物质,排出代谢废物和对细胞有害的物质。
48.通道蛋白是一类跨越细胞膜磷脂双分子层的蛋白质。它包含两大类:水通道蛋白和离子通道蛋白。
49.磷脂双分子层内部是疏水的,几乎阻碍所有水溶性分子通过。年,美国科学家阿格雷才成功地将构成水通道的蛋白质分离出来。水通道与人体体液平衡的维持密切相关,例如,肾小球的滤过作用和肾小管的重吸收作用,都与水通道的结构和功能有直接关系。
50.细胞的主动运输需要能量。细胞内有机物的合成需要能量。肌细胞的收缩需要能量……细胞作为一个基本的生命系统,只有不断输入能量,才能维持生命活动的有序性。
5.对细胞来说,能量的获得和利用都必须通过化学反应。细胞中每时每刻都进行着许多化学反应,统称为细胞代谢。
52.细胞代谢是细胞生命活动的基础,但代谢过程中也会产生对细胞有害的物质,如过氧化氢。幸而细胞中含有一种物质,能将过氧化氢及时分解,变成氧和水。这种物质就是过氧化氢酶。
53.新鲜肝脏中有较多的过氧化氢酶。加热促使过氧化氢分解,是因为加热使过氧化氢分子得到能量,从常态转变为容易分解的活跃状态。分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。
54.Fe3+和过氧化氢酶促使过氧化氢分解,但它们并未供给过氧化氢能量,而是降低了过氧化氢分解反应的活化能。同无机催化剂相比,酶降低活化能的作用更显著,因而催化效率更高。
55.学科交叉:无机催化剂催化的化学反应范围比较广。例如,酸既能催化淀粉水解,也能催化蛋白质水解,还能催化脂肪水解。
56.酶的化学本质不同于无机催化剂。酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。
57.酶具有高效性:大量的实验数据表明,酶的催化效率大约是无机催化剂的07-03倍。
58.酶具有专一性:过氧化氢酶只能催化过氧化氢分解,不能催化其他化学反应。脲酶除了催化尿素分解外,对其他化学反应也不起作用。每一种酶只能催化一种或一类化学反应。
59.许多无机催化剂能在高温、高压、强酸或强碱条件催化化学反应。
60.细胞中几乎所有的化学反应都是由酶来催化的。酶对化学反应的催化效率称为酶活性。
6.唾液淀粉酶、胃蛋白酶等消化酶都是在消化道中起作用的。不同部位消化液的pH不一样。唾液的pH为6.2-7.4,胃液的pH为0.9-.5,小肠液的pH为7.6。唾液淀粉酶会随唾液流人胃,胃蛋白酶会随食糜进入小肠。
62.建议用淀粉酶探究温度对酶活性的影响,用过氧化氢酶探究pH对酶活性的影响。
63.酶所催化的化学反应一般是在温和的条件下进行的。
64.一般来说,动物体内的酶最适温度在35-40°C之间;植物体内的酶最适温度在40-50°C之间;细菌和真菌体内的酶最适温度差别较大,有的酶最适温度可高达70°C。
65.动物体内的酶最适pH大多在6.5-8.0之间,但也有例外,如胃蛋白酶的最适pH为.5;植物体内的酶最适pH
大多在4.5-6.5之间。
66.过酸、过碱或温度过高,会使酶的空间结构遭到破坏,使酶永久失活。0°C左右时,酶的活性很低,但酶的
空间结构稳定,在适宜的温度下酶的活性可以升高。因此,酶制剂适于在低温(0-4°C)下保存。
67.溶菌酶能够溶解细菌的细胞壁,具有抗菌消炎的作用。在临床上与抗生素复合使用,能增强抗生素的疗效。
68.果胶酶能分解果肉细胞壁中的果胶,提高果汁产量,使果汁变得清亮。
69.加酶洗衣粉中添加的是蛋白酶、脂肪酶、淀粉酶等。加酶洗衣粉中的酶可不是直接来自生物体的,而是经过酶工程改造的产品,比一般的酶稳定性强。
70.残留在牙缝里的食物残渣是细菌的美食,也是导致龋齿的祸根。含酶牙膏可以分解细菌,使我们牙齿亮洁,口气清新。
7.多酶片中含有多种消化酶,你消化不良时可以服用。
72.细胞中的糖类、脂肪等有机物都储存着化学能,但是直接给细胞的生命活动提供能量的却是另一种有机物——ATP。
73.相关信息:ATP的英文全称是adenosinetriphosphate。adenosine是腺苷,由腺嘌呤和核糖结合而成。tri是三的意思。phosphate是磷酸盐。
74.ATP是三磷酸腺苷的英文名称缩写。ATP分子的结构式可以简写成______其中A代表腺苷。ATP可以水解,这实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内的一种高能磷酸化合物。
75.细胞中绝大多数需要能量的生命活动都是由ATP直接提供能量的。萤火虫尾部的发光细胞中含有荧光素和荧光素酶。荧光素接受ATP提供的能量后就被激活。在荧光素酶的催化作用下,激活的荧光素与氧发生化学反应,形成氧化荧光素并且发出荧光。
76.细胞内的化学反应有些是需要吸收能量的,有些是释放能量的。吸能反应一般与ATP水解的反应相联系,由ATP水解提供能量;放能反应一般与ATP合成相联系,释放的能量储存在ATP中。也就是说,能量通过ATP分子在吸能反应和放能反应之间流通。因此,可以形象地把ATP比喻成细胞内流通的能量“通货”。
77.对比实验:设置两个或两个以上的实验组,通过对结果的比较分析,来探究某种因素与实验对象的关系,这样的实验叫做对比实验。在本节课的探究活动中,需要设置有氧和无氧两种条件,探究酵母菌在不同氧气条件下细胞呼吸的方式,这两个实验组的结果都是事先未知的,通过对比可看出氧气条件对细胞呼吸的影响。
78.CO2可使澄清石灰水变混浊,也可使溴麝香草酚蓝水溶液由蓝变绿再变黄。根据石灰水浑浊程度或溴麝香草酚蓝水溶液变成黄色的时间,可以检测酵母菌培养液中CO2的产生情况。
79.检测酒精的产生:橙色的重铬酸钾溶液,在酸性条件下与乙醇发生化学反应,变成灰绿色。
80.一般地说,线粒体均匀地分布在细胞质中。但是,活细胞中的线粒体往往可以定向地运动到代谢旺盛的部位。肌细胞内的肌质体就是由大量变形的线粒体组成的,肌质体显然有利于对肌细胞的能量供应。
8.有氧呼吸最常利用的物质是葡萄糖,其化学反应式可以简写成:
82.有氧呼吸第一个阶段是,分子的葡萄糖分解成2分子的丙酮酸,产生少量的[H],并且释放出少量的能量。这一阶段不需要氧的参与,是在细胞质基质中进行的。
83.有氧呼吸第二个阶段是,丙酮酸和水彻底分解成二氧化碳和[H],并释放出少量的能量。这一阶段不需要氧的参与,是在线粒体基质中进行的。
84.有氧呼吸第三个阶段是,上述两个阶段产生的[H],经过一系列的化学反应,与氧结合形成水,同时释放出大量的能量。这一阶段需要氧的参与,是在线粒体内膜上进行的。
85.概括地说,有氧呼吸是指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程。
86.同有机物在生物体外的燃烧相比,有氧呼吸具有不同的特点:有氧呼吸是在温和的条件下进行的;有机物中的能量是经过一系列的化学反应逐步释放的;这些能量有相当一部分储存在ATP中。
87.一般地说,无氧呼吸最常利用的物质也是葡萄糖。
88.无氧呼吸的全过程,可以概括地分为两个阶段,这两个阶段需要不同酶的催化,但都是在细胞质基质中进行的。
89.第一个阶段与有氧呼吸的第一个阶段完全相同。
90.第二个阶段是,丙酮酸在不同酶的催化作用下,分解成酒精和二氧化碳,或者转化成乳酸。
9.无论是分解成酒精和二氧化碳或者是转化成乳酸,无氧呼吸都只在第一阶段释放出少量的能量,生成少量ATP。葡萄糖分子中的大部分能量则存留在酒精或乳酸中。
92.破伤风由破伤风芽孢杆菌引起,这种病菌只能进行无氧呼吸。皮肤破损较深或被锈钉扎伤后,病菌就容易大量繁殖。遇到这种情况,医院治疗,如清理伤口、敷药并注射破伤风抗毒血清。
93.提倡慢跑等有氧运动的原因之一,是不致因剧烈运动导致氧的不足,而使肌细胞因无氧呼吸产生大量乳酸。乳酸的大量积累会使肌肉酸张乏力。
94.绿叶中的色素能够溶解在有机溶剂无水乙醇中,所以,可以用无水乙醇提取绿叶中的色素。绿叶中的色素不只一种,它们都能溶解在层析液中。然而,它们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快;反之则慢。这样,几分钟后,绿叶中的色素就会随着层析液在滤纸上的扩散而分离开。
95.二氧化硅有助于研磨得充分,碳酸钙可防止研磨中色素被破坏。
96.将研磨液迅速倒入玻璃漏斗(漏斗基部放一块单层尼龙布)中进行过滤。将滤液收集到试管中,及时用棉塞将试管口密封。
97.将适量的层析液倒入试管中,将滤纸条(有滤液细线的一端朝下)轻轻插入层析液中,随后用棉塞塞紧试管口。注意,不能让滤液细线触及层析液。
98.叶绿素a和叶绿素b主要吸收蓝紫光和红光,胡萝卜素和叶黄素主要吸收蓝紫光。这些色素吸收的光都可用于光合作用。因为叶绿素对绿光吸收最少,绿光被反射出来,所以叶片呈现绿色。
99.学科交叉:光是一种电磁波。可见光的波长范围大约是-nm。不同波长的光,颜色不同。波长小于nm的光是紫外光。波长大于nm的光是红外光。一般情况下,光合作用所利用的光都是可见光。
00.与社会的联系:根据上述不同色素对不同波长的光的吸收特点,想一想,温室或大棚种植蔬菜时,应选择什么颜色的玻璃、塑料薄膜或补充光源?选择白色(无色)玻璃、补充蓝紫光或红光
0.在电子显微镜下观察,可以看到叶绿体的外表有双层膜,内部有许多基粒,基粒与基粒之间充满了基质。每个基粒都由一个个圆饼状的囊状结构堆叠而成。这些囊状结构称为类囊体。吸收光能的四种色素,就分布在类囊体的薄膜上。
02.每个基粒都含有两个以上的类囊体,多者可达00个以上。叶绿体内有如此多的基粒和类囊体,极大地扩展了受光面积。据计算,g菠菜叶片中的类囊体的总面积竟达60m2左右。
03.植物体吸收光能的色素,除存在于叶片的一些细胞中外,还存在于哪些部位的细胞之中?植物幼嫩的茎和果实等器官的一些含有光合色素的细胞中。
04.海洋中的藻类植物,习惯上依其颜色分为绿藻、褐藻和红藻,它们在海水中的垂直分布依次是浅、中、深,这与光能的捕获有关吗?
答:水层对光波中的红、橙部分(长波光)吸收显著多于对蓝、绿部分的吸收,即到达深水层的光线是相对富含短(短、长)波长的光,所以吸收红光和蓝紫光较多的绿藻分布于海水的浅(浅、深)层,吸收蓝紫光和绿光较多的红藻分布于深(浅、深)层。
05.卡尔文等用小球藻(一种单细胞的绿藻)做实验:用4C标记的4CO2,供小球藻进行光合作用,然后追踪检测其放射性,最终探明了CO2中的碳在光合作用中转化成有机物中碳的途径,这一途径称为卡尔文循环。
06.光反应阶段:光合作用第一个阶段中的化学反应,必须有光才能进行,这个阶段叫做光反应阶段。暗反应阶段:光合作用第二个阶段中的化学反应,有没有光都可以进行。光反应阶段的化学反应是在类囊体膜上进行的。暗反应阶段的化学反应是在叶绿体基质中进行的。
07.相关信息:这里的[H]是一种十分简化的表示方式。这一过程实际上是辅酶II(NADP+)与电子和质子(H+)结合,形成还原型辅酶II(NADPH)。
08.在暗反应阶段中,绿叶通过气孔从外界吸收进来的二氧化碳,不能直接被[H]还原。它必须首先与植物体内的C5(一种五碳化合物)结合,这个过程叫做二氧化碳的固定。一个二氧化碳分子被一个C5分子固定以后,很快形成两个C3(一种三碳化合物)分子。在有关酶的催化作用下,C3接受ATP释放的能量并且被[H]还原。随后,一些接受能量并被还原的C3经过一系列变化,形成糖类;另一些接受能量并被还原的C3则经过一系列的化学变化,又形成C5,从而使暗反应阶段的化学反应持续地进行下去。由此可见,在光合作用的过程中,光反应阶段与暗反应阶段既有区别又紧密联系,是缺一不可的整体。
09.光合作用的强度可以通过测定一定时间内原料消耗或产物生成的数量来定量地表示。
0.化能合成作用:除了绿色植物,自然界中少数种类的细菌,能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用叫做化能合成作用,这些细菌也属于自养生物。例如,生活在土壤中的硝化细菌,不能利用光能,但是能将土壤中的氨(NH3)氧化成亚硝酸(HNO2),进而将亚硝酸氧化成硝酸(HNO3)。硝化细菌能够利用这两个化学反应中释放出的化学能,将二氧化碳和水合成为糖类,这些糖类可供硝化细菌维持自身的生命活动。
.多细胞生物体体积的增大,即生物体的生长,既靠细胞生长增大细胞的体积,还要靠细胞分裂增加细胞的数量。事实上,不同动(植)物同类器官或组织的细胞大小一般无明显差异,器官大小主要决定于细胞数量的多少。
2.琼脂块的表面积与体积之比随着琼脂块的增大而减小;NaOH扩散的体积与整个琼脂块的体积之比随着琼脂块的增大而减小。在相同时间内,物质扩散进细胞的体积与细胞的总体积之比可以反映细胞的物质运输的效率。通过模拟实验可以看出,细胞体积越小,其相对表面积越大,细胞的物质运输的效率就越高。
3.细胞以分裂的方式进行增殖。真核细胞的分裂方式有三种:有丝分裂、无丝分裂、减数分裂。
4.知识链接:减数分裂是一种特殊方式的有丝分裂,它与有性生殖细胞的形成有关。
5.有丝分裂中期染色体的形态比较稳定,数目比较清晰,便于观察。中心粒在间期倍增,成为两组。
6.无丝分裂:在分裂过程中没有出现纺锤丝和染色体的变化,所以叫做无丝分裂。例如,蛙的红细胞的无丝分裂。
7.技能训练:在有些个体较大的原生动物(如草履虫)的细胞中,会出现2个或多个细胞核。有些原生动物的细胞中有用于收集和排泄废物的伸缩泡。
8.2.如何比较细胞周期不同时期的时间长短?中期的时间=洋葱的细胞周期(2h)*每一时期的细胞数占计数细胞总数的比例。
9.在动物胚胎发育过程中,红细胞和心肌细胞都来自一群相似的胚胎细胞。后来,有的细胞发育为红细胞,合成运输氧的血红蛋白;有的细胞发育为心肌细胞,合成行使运动功能的蛋白。又如,在同一个植物体中,叶肉细胞的细胞质中有大量的叶绿体,能够进行光合作用;表皮细胞具有保护功能,细胞质中没有叶绿体,而在细胞壁上形成明显的角质层;贮藏细胞没有叶绿体,也没有角质层,但有体积较大的液泡,细胞中贮藏着许多营养物质。追根溯源,同一植物体的这些细胞也都来自一群彼此相似的早期胚细胞。
20.在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和功能上发生稳定性差异的过程,叫做细胞分化。细胞分化是一种持久性的变化,一般来说,分化了的细胞将一直保持分化后的状态,直到死亡。
2.细胞分化使多细胞生物体中的细胞趋向专门化,有利于提高各项生理功能的效率。
22.就一个个体来说,各种细胞具有完全相同的遗传信息,但形态、结构和功能却有很大差异,这是怎么回事呢?原来,在个体发育过程中,不同的细胞中遗传信息的执行情况是不同的,例如,在红细胞中,与血红蛋白合成有关的基因处于活动状态,与肌动蛋白(肌细胞中的一种蛋白质)合成有关的基因则处于关闭状态;在肌细胞中则相反。
23.细胞的全能性:是指已经分化的细胞,仍然具有发育成完整个体的潜能。
24.相关信息:受精卵和早期胚胎细胞都是具有全能性的细胞。
25.科学家曾用非洲爪蟾的蝌蚪做实验,将它的肠上皮细胞的核移植到去核的卵细胞中,结果获得了新的个体。我们熟悉的克隆羊多利,是将乳腺细胞的核移植到去核的卵细胞中培育成的,这说明已分化的动物体细胞的细胞核是具有全能性的。但是,到目前为止,人们还没有成功地将单个已分化的动物体细胞培养成新的个体。
26.动物体细胞的细胞核为什么具有全能性?动物细胞的全能性随着分化程度的提高而逐渐受到限制,细胞分化潜能变窄,这是指整体细胞而言。可是细胞核则不同,它含有保持本物种遗传性所需要的全套遗传信息,并且并没有因细胞分化而丢失遗传信息,因此,高度分化的细胞核仍然具有全能性。
27.有人做过这样的实验,体外培养的人体某种细胞,最多分裂50次左右就停止分裂了,并且丧失了正常的功能。这说明细胞会随着分裂次数的增多而衰老。
28.衰老细胞的特征:细胞内的水分减少,结果使细胞萎缩,体积变小,细胞代谢的速率减慢。细胞内多种酶的活性降低。例如,由于头发基部的黑色素细胞衰老,细胞中的酪氨酸酶活性降低,黑色素合成减少,所以老年人的头发会变白。细胞内的色素会随着细胞衰老而逐渐积累,它们会妨碍细胞内物质的交流和传递,影响细胞正常的生理功能。细胞内呼吸速率减慢,细胞核的体积增大,核膜内折,染色质收缩、染色加深。细胞膜通透性改变,使物质运输功能降低。
29.细胞衰老的原因
自由基学说:在生命活动中,细胞不断进行各种氧化反应,在这些反应中很容易产生自由基。当自由基攻击生物膜的组成成分磷脂分子时,产物同样是自由基。这些新产生的自由基又会去攻击别的分子,由此引发雪崩式的反应,对生物膜损伤比较大。此外,自由基还会攻击DNA,可能引起基因突变;攻击蛋白质,使蛋白质活性下降,致使细胞衰老。
端粒学说:每条染色体的两端都有一段特殊序列的DNA,称为端粒。端粒DNA序列在每次细胞分裂后会缩短一截。随着细胞分裂次数的增加,截短的部分会逐渐向内延伸。在端粒DNA序列被“截”短后,端粒内侧的正常基因的DNA序列就会受到损伤,结果使细胞活动渐趋异常。
30.由基因所决定的细胞自动结束生命的过程,就叫细胞凋亡。由于细胞凋亡受到严格的由遗传机制决定的程序性调控,所以也常常被称为细胞编程性死亡。
3.在成熟的生物体中,细胞的自然更新、被病原体感染的细胞的清除,也是通过细胞凋亡完成的。细胞凋亡对于多细胞生物体完成正常发育,维持内部环境的稳定,以及抵御外界各种因素的干扰都起着非常关键的作用。
32.细胞坏死与细胞凋亡不同。细胞坏死是在种种不利因素影响下,由于细胞正常代谢活动受损或中断引起的细胞损伤和死亡。
33.有的细胞受到致癌因子的作用,细胞中遗传物质发生变化,就变成不受机体控制的、连续进行分裂的恶性增殖细胞,这种细胞就是癌细胞。
34.癌症通常也叫恶性肿瘤,是由癌细胞大量增殖而引起的。
35.在适宜的条件下,癌细胞能够无限增殖。在人的一生中,体细胞一般能够分裂50-60次,而癌细胞却不受限制。
36.致癌因子大致分为三类:物理致癌因子、化学致癌因子和病毒致癌因子。
37.病毒致癌因子:是指能使细胞发生癌变的病毒。致癌病毒能够引起细胞发生癌变,主要是因为它们含有癌基因以及与致癌有关的核酸序列。它们通过感染人的细胞后,将其基因组整合进入的基因组中,从而诱发人的细胞癌变,如Rous肉瘤病毒等。
38.原癌基因主要负责调节细胞周期,控制细胞生长和分裂进程;抑癌基因主要是阻止细胞不正常增殖。致癌因子会损伤细胞中的DNA分子,使原癌基因和抑癌基因发生突变。
39.癌症的发生并不是单一基因突变的结果,至少在一个细胞中发生5-6个基因突变,才能赋予癌细胞所有的特征,这是一种累积效应。易患癌症的多为老年人。
40.发霉的、熏制的食品,烤焦的以及高脂肪的食品都含有较多的致癌因子。
4.癌症的发生与心理状态也有一定关系。如果性格过于孤僻、经常压抑自己的情绪、不乐于与人交流,就会影响神经系统和内分泌系统的调节功能,增加癌症发生的可能性。
必修二教材知识点.豌豆是自花传粉植物,而且是闭花受粉,也就是豌豆花在未开放时,就已经完成了受粉,避免了外来花粉的干扰。所以豌豆在自然状态下一般都是纯种。
2.两性花的花粉,落到同一朵花的雌蕊柱头上的过程叫做自花传粉,也叫自交。豌豆花的结构很适合自花传粉。
3.两朵花之间的传粉过程叫做异花传粉。孟德尔在做杂交实验时,先除去未成熟花的全部雄蕊,这叫做去雄。然后,套上纸袋。待雌蕊成熟时,釆集另一植株的花粉,撒在去雄花的雌蕊的柱头上,再套上纸袋。
4.在杂种后代中,同时出现显性性状和隐性性状的现象叫做性状分离。
5.孟德尔针对豌豆的一对相对性状杂交实验提出的“分离假设”:生物体在形成配子时,成对的遗传因子彼此分离,分别进入不同的配子中。配子中只含有每对遗传因子中的一个。
6.孟德尔用测交实验验证了其“分离假设”是正确的。
7.孟德尔一对相对性状的实验结果及其解释,后人把它归纳为孟德尔第一定律,又称分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
8.孟德尔针对豌豆的两对相对性状杂交实验提出的“自由组合假设”:F(YyRr)在产生配子时,每对遗传因子彼此分离,不同对的遗传因子可以自由组合。这样F产生的雌配子和雄配子各有4种:YR、Yr、yR、yr,它们之间的数量比为∶∶∶。
9.孟德尔用测交实验验证了其“自由组合假设”是正确的。
0.自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
.控制相对性状的基因,叫做等位基因,如D和d。
2.人和哺乳动物的精子是在睾丸中形成的。睾丸里有许多曲细精管。曲细精管中有大量的精原细胞。精原细胞是原始的雄性生殖细胞。在减数第一次分裂前的间期,精原细胞的体积增大,染色体复制,成为初级精母细胞。
3.对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要。
4.萨顿的推理,也是类比推理。他将看不见的基因与看得见的染色体的行为进行类比,根据其惊人的一致性,提出基因位于染色体上的假说。类比推理得出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。
5.果蝇易饲养,繁殖快,0多天就繁殖一代,一只雌果蝇一生能产生几百个后代,所以生物学家常用它作为遗传学研究的实验材料。
6.摩尔根把一个特定的基因和一条特定的染色体——X染色体联系起来,从而用实验证明了基因在染色体上(假说演绎法)。
7.摩尔根和他的学生们绘出了第个果蝇各种基因在染色体上相对位置的图,说明基因在染色体上呈线性排列。
8.位于性染色体上的基因控制的性状在遗传中总是与性别相关联,这种现象称为伴性遗传。
9.男性红绿色盲基因只能从母亲那里传来,以后只能传给女儿。这种遗传特点,在遗传学上叫做交叉遗传。
20.抗维生素D佝偻病就是一种显性伴性遗传病。这种病受显性基因(D)控制,当女性的基因型为XDXD、XDXd时,都是患者,但后者比前者发病轻。男性患者的基因型只有一种情况,即XDY,发病程度与XDXD相似。
2.格里菲思推论:在第四组实验中,已经被加热杀死的S型细菌中含有转化因子,将无毒性的R型活细菌转化为有毒性的S型活细菌。
22.为了弄清楚转化因子,艾弗里及其同事对S型细菌中的物质进行了提纯和鉴定。他们将提纯的DNA、蛋白质和多糖等物质分别加入到培养了R型细菌的培养基中,结果发现:只有加入DNA,R型细菌才能够转化为S型细菌,并且DNA的纯度越高,转化就越有效;如果用DNA酶分解从S型活细菌中提取的DNA,就不能使R型细菌发生转化。艾弗里提出了不同于当时大多--数科学家观点:DNA才是使R型细菌产生稳定遗传变化的物质。
23.由于艾弗里实验中提取出的DNA,纯度最高时也还有0.02%的蛋白质,因此,仍有人对实验结论表示怀疑。赫尔希和蔡斯以T2噬菌体为实验材料,利用放射性同位素标记的新技术,完成了另一个更具说服力的实验。
24.赫尔希和蔡斯首先在分别含有放射性同位素35S和放射性同位素32P的培养基中培养大肠杆菌,再用上述大肠杆菌培养T2噬菌体,得到DNA含有32P标记或蛋白质含有35S标记的噬菌体。然后,用32P或35S标记的T2噬菌体分别侵染未被标记的大肠杆菌。
25.搅拌的目的是使吸附在细菌上的噬菌体与细菌分离,离心的目的是让上清液中析出重量较轻的T2噬菌体颗粒,而离心管的沉淀物中留下被感染的大肠杆菌。
26.从烟草花叶病毒中提取出来的蛋白质,不能使烟草感染病毒,但是,从这些病毒中提取出来的RNA,却能使烟草感染病毒。因此,在这些病毒中,RNA是遗传物质。因为绝大多数生物的遗传物质是DNA,所以说DNA是主要的遗传物质。
27.DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。
28.DNA的复制是指以亲代DNA为模板合成子代DNA的过程。这一过程是在细胞有丝分裂的间期和减数第一次分裂前的间期,随着染色体的复制而完成的。
29.复制开始时,DNA分子首先利用细胞提供的能量,在解旋酶的作用下,把两条螺旋的双链解开,这个过程叫做解旋。
30.DNA分子独特的双螺旋结构,为复制提供了精确的模板,通过碱基互补配对,保证了复制能够准确地进行。
3.一个DNA分子上有许多基因,每一个基因都是特定的DNA片段,有着特定的遗传效应。
32.大部分随机排列的脱氧核苷酸序列从来不曾出现在生物体内,而有些序列却会在生物体内重复数千甚至数百万次。基因不是碱基对随机排列成的DNA片段。
33.遗传信息蕴藏在4种碱基的排列顺序之中;碱基排列顺序的千变万化,构成了DNA分子的多样性,而碱基的特定的排列顺序,又构成了每一个DNA分子的特异性;DNA分子的多样性和特异性是生物体多样性和特异性的物质基础。DNA分子上分布着多个基因,基因是有遗传效应的DNA片段。
34.RNA一般是单链,而且比DNA短,因此能够通过核孔,从细胞核转移到细胞质中。
35.mRNA上3个相邻的碱基决定个氨基酸。每3个这样的碱基又称做个密码子。
36.tRNA的种类很多,但是,每种tRNA只能识别并转运一种氨基酸。tRNA分子比mRNA小得多,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。
37.核糖体是可以沿着mRNA移动的。核糖体与mRNA的结合部位会形成2个tRNA的结合位点。
38.通常,一个mRNA分子上可以相继结合多个核糖体,同时进行多条肽链的合成,因此,少量的mRNA分子就可以迅速合成出大量的蛋白质。
39.根据mRNA的碱基序列可以写出确定的氨基酸序列,但不能根据氨基酸序列写出确定的碱基序列。
40.科学家克里克预见了遗传信息传递的一般规律,并将这一规律命名为中心法则。
4.最初中心法则的内容是:遗传信息可以从DNA流向DNA,即DNA的自我复制;也可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译;但是遗传信息不能从蛋白质流向蛋白质或RNA或DNA。修改后的中心法则增加了遗传信息从RNA流向RNA或DNA。
42.基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状。基因还能通过控制蛋白质的结构直接控制生物体的性状。
43.皱粒豌豆的DNA中插入了一段外来DNA序列,打乱了编码淀粉分支酶的基因,导致淀粉分支酶不能合成。囊性纤维病患者中,编码一个跨膜蛋白(CFTR蛋白)的基因缺失了3个碱基,导致CFTR蛋白缺少一个氨基酸,进而影响了CFTR蛋白的结构,使CFTR转运氯离子的功能异常。
44.基因与性状的关系并不都是简单的线性关系。例如,人的身高可能是由多个基因决定的,其中每一个基因对身高都有一定的作用。
45.基因与基因、基因与基因产物、基因与环境之间存在着复杂的相互作用,这种相互作用形成了一个错综复杂的网络,精细地调控着生物体的性状。
46.线粒体和叶绿体中的DNA,都能够进行半自主自我复制,并通过转录和翻译控制某些蛋白质的合成。为了与细胞核的基因相区别,将线粒体和叶绿体中的基因称作细胞质基因。
47.对人的线粒体DNA的研究表明,线粒体DNA的缺陷与数十种人类遗传病有关。这些疾病很多是与脑部和肌肉有关的。这些遗传病都只能通过母亲遗传给后代。
48.形成果蝇红眼的直接原因是红色色素的形成,而红色色素的形成需要经历一系列生化反应,每一个反应所涉及的酶都与相应的基因有关,因此,红眼的形成实际上是多个基因协同作用的结果。但是,科学家只将其中一个因突变而导致红眼不能形成的基因命名为红眼基因。其原因是,红眼基因正常是形成红眼的必要而非充分条件。
红眼基因正常,并且其他涉及红眼形成的基因也正常时,果蝇的红眼才能形成;如果红眼基因不正常,即使所有其他涉及红眼形成的基因都正常,果蝇的红眼也不能形成。
49.基因控制生物体的性状是通过指导蛋白质的合成来实现的。基因可以通过控制酶的合成来控制代谢过程,进而控制生物体的性状;也可以通过控制蛋白质的结构直接控制生物体的性状。
50.基因与性状之间并不是简单的——对应关系。有些性状是由多个基因共同决定的,有的基因可决定或影响多种性状。一般来说,性状是基因与环境共同作用的结果。
5.与正常红细胞的血红蛋白相比,镰刀型红细胞血红蛋白分子的多肽链上发生了氨基酸的替换。
52.DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫做基因突变。
53.基因突变若发生在配子中,将遵循遗传规律传递给后代。若发生在体细胞中,一般不能遗传。但有些植物的体细胞发生基因突变,可通过无性繁殖传递。此外,人体某些体细胞基因的突变,有可能发展为癌细胞。
54.易诱发生物发生基因突变并提高突变频率的因素可分为三类:物理因素、化学因素和生物因素。在没有这些外来因素的影响时,基因突变也会由于DNA分子复制偶尔发生错误、DNA的碱基组成发生改变等原因自发产生。
55.诱发基因突变的三类外因的具体机理是:紫外线、X射线及其他辐射能损伤细胞内的DNA;亚硝酸、碱基类似物等能改变核酸的碱基;某些病毒的遗传物质能影响宿主细胞的DNA等。由于自然界诱发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。
56.基因突变的随机性表现在基因突变可以发生在生物个体发育的任何时期;可以发生在细胞内不同的DNA分子上;同一DNA分子的不同部位。
57.基因突变的不定向表现为一个基因可以向不同的方向发生突变,产生一个以上的等位基因。基因突变的方向和环境没有明确的因果关系。
58.虽然基因突变的频率很低,但是当一个种群内有许多个体时,就有可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。
59.对生物来说,基因突变可能破坏生物体与现有环境的协调关系,而对生物有害,但有些基因突变,也可能使生物产生新的性状,适应改变的环境,获得新的生存空间。还有些基因突变既无害也无益。基因突变尽管是随机的、不定向的,在自然状态下突变频率很低,但却是普遍存在的。
60.基因突变是新基因产生的途径,是生物变异的根本来源,是生物进化的原始材料。
6.基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。在生物体通过减数分裂形成配子时,随着非同源染色体的自由组合,非等位基因也自由组合。另一种类型的基因重组发生在减数分裂形成四分体时期,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,导致染色单体上的基因重组。
62.有性生殖的基因重组有助于物种在一个无法预测将会发生什么变化的环境中生存。这是因为,基因重组能够产生多样化的基因组合的子代,其中可能有一些子代会含有适应某种变化的、生存所必需的基因组合。所以说,基因重组也是生物变异的来源之一,对生物的进化也具有重要的意义。
63.基因突变是染色体的某一个位点上基因的改变,这种改变在光学显微镜下是无法直接观察到的。而染色体变异是可以用显微镜直接观察到的,如染色体结构的改变、染色体数目的增减等。
64.猫叫综合征是人的第5号染色体部分缺失引起的遗传病。
65.染色体结构的改变,会使排列在染色体上的基因的数目或排列顺序发生改变,而导致性状的变异。大多数染色体结构变异对生物体是不利的,有的甚至会导致生物体死亡。
66.染色体数目的变异可以分为两类:一类是细胞内个别染色体的增加或减少,另一类是细胞内染色体数目以染色体组的形式成倍地增加或减少。
67.细胞中的一组非同源染色体,在形态和功能上各不相同,但又互相协调,共同控制生物的生长、发育、遗传和变异,这样的一组染色体,叫做一个染色体组。
68.由受精卵发育而来的个体,体细胞中含有两个染色体组的个体叫做二倍体,体细胞中含有三个或三个以上染色体组的个体叫做多倍体。
69.自然界中,几乎全部动物和过半数的高等植物都是二倍体。多倍体在植物中很常见,在动物中极少见。
70.与二倍体植株相比,多倍体的植株常常是茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。
7.人工诱导多倍体的方法很多,如低温处理等。目前最常用而且最有效的方法,是用秋水仙素来处理萌发的种子或幼苗。当秋水仙素作用于正在分裂的细胞时,能够抑制纺锤体的形成,导致染色体不能移向细胞两极,从而引起细胞内染色体数目加倍。
72.像蜜蜂的雄蜂这样,体细胞中含有本物种配子染色体数目的个体,叫做单倍体。
73.与正常植株相比,单倍体植株长得弱小,而且高度不育。但是,利用单倍体植株培育新品种却能明显缩短育种年限。
74.育种工作者常常采用花药(花粉)离体培养的方法来获得单倍体植株,然后经过人工诱导使染色体数目加倍,重新恢复到正常植株的染色体数目。用这种方法培育得到的植株,不仅能够正常生殖,而且每对染色体上的成对的基因都是纯合的,自交产生的后代不会发生性状分离。
75.人类遗传病通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病、多基因遗传病和染色体异常遗传病三大类。
76.单基因遗传病是指受一对等位基因控制的遗传病。
77.多基因遗传病是指受两对以上的等位基因控制的人类遗传病。多基因遗传病在群体中的发病率比较高。
78.由染色体异常引起的遗传病叫做染色体异常遗传病(简称染色体病)。
79.多基因遗传病主要包括一些先天性发育异常和一些常见病,如原发性高血压、冠心病、哮喘病、青少年型糖尿病等;2三体综合征又叫先天性愚型,是由于染色体数目异常造成的。
80.通过遗传咨询和产前诊断等手段,对遗传病进行检测和预防,在一定程度上能够有效地预防遗传病的产生和发展。
8.人类基因组计划的目的是测定人类基因组的全部DNA序列,解读其中包含的遗传信息。
82.生物的变异,有的仅仅是由于环境的影响造成的,没有引起遗传物质的变化,是不遗传的变异;有的是由于生殖细胞内遗传物质的改变引起的,因而能够遗传给后代,属于可遗传的变异。基因突变、基因重组和染色体变
异是可遗传变异的来源。
83.由环境引起的变异是不能够遗传的(×)(判断对错)。
84.杂交育种是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。
85.要想把高产、不抗病和低产、抗病两个小麦品种的优良性状组合在一起,育种上一个有效的方法就是把这两个品种杂交,使基因重组。从第二代中挑选高产、抗病的个体,将它们的种子留下来,下一年播种。再从后代中挑选出符合高产抗病条件的植株,采收种子留下来做种。如此经过几代汰劣留良的选择过程,就可以得到新的优良品种了。
86.诱变育种就是利用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯等)来处理生物,使生物发生基因突变。用这种方法可以提高突变率,在较短时间内获得更多的优良变异类型。
87.改良动植物品种,最古老的育种方法是选择育种:从每一代的变异个体中选出最好的类型进行繁殖、培育。但是选择育种周期长,可选择的范围也有限。
88.通过杂交,使基因重新组合,可以将不同生物的优良性状组合起来。但是,杂交后代会出现性状分离现象,育种过程繁杂而缓慢,效率低,亲本的选择一般限制在同种生物范围之内。
89.人工诱变的方法应用在育种上,大大提高育种的效率和选择范围。但是,基因突变的不定向性,导致诱变育种的盲目性。
90.基因工程,又叫做基因拼接技术或DNA重组技术。通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
9.基因的“剪刀”指的是限制性核酸内切酶。一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切
割DNA分子。脱氧核糖和磷酸交替连接而构成的DNA骨架上的缺口,需要靠DNA连接酶来“缝合”。要将外源基因送入受体细胞,还需要专门的运输工具,这就是运载体。目前常用的运输工具有质粒、噬菌体和动植物病毒等。
92.质粒存在于许多细菌以及酵母菌等生物的细胞中,是拟核或细胞核外能够自主复制的很小的环状DNA分子。
93.基因工程的操作一般要经历四个步骤:提取目的基因、目的基因与运载体结合、将目的基因导入受体细胞、目的基因的检测与鉴定。
94.拉马克提出生物各种适应性特征的形成都是由于用进废退和获得性遗传。
95.由于受到当时科学发展水平的限制,对于遗传和变异的本质,达尔文还不能做出科学的解释。达尔文生物进化的解释也局限于个体水平,而实际上,如果个体出现可遗传的变异,相应基因必须在群体里扩散并取代原有的基因,这样新的生物类型才可能形成。达尔文强调物种形成是渐变的结果,不能很好地解释物种大爆发等现象。
96.一个种群中全部个体所含有的全部基因,叫做这个种群的基因库。在一个种群基因库中,某个基因占全部等位基因数的比率,叫做基因频率。
97.自然界中种群的基因频率要稳定不变(不进化),必须满足以下几点:①该种群非常大;②所有的雌雄个体都能自由交配;③没有迁入和迁出;④自然选择对不同表现型的个体没有作用;⑤这对基因不发生突变,并且携带这对基因的染色体不发生变异。
98.基因突变在自然界是普遍存在的。基因突变产生新的等位基因,这就可能使种群的基因频率发生变化。
99.可遗传的变异来源于基因突变、基因重组和染色体变异。其中,基因突变和染色体变异统称为突变。
00.突变的有害和有利也不是绝对的,这往往取决于生物的生存环境。
0.由于突变和重组都是随机的、不定向的,因此它们只是提供了生物进化的原材料,不能决定生物进化的方向。
02.在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
03.不同种群间的个体,在自然条件下基因不能自由交流的现象叫做隔离。
04.能够在自然状态下相互交配并且产生可育后代的一群生物称为一个物种。
05.不同物种之间一般是不能相互交配的,即使交配成功,也不能产生可育的后代,这种现象叫做生殖隔离。
06.同一种生物由于地理上的障碍而分成不同的种群,使得种群间不能发生基因交流的现象,叫做地理隔离。
07.一个祖先种由于地理隔离进化出新物种的大致过程:①地理隔离形成不同种群;②不同种群刚开始的基因库差异较小;③不同种群内发生不同的突变和重组,基因库差异加大;④不同种群所处环境不同,环境的选择作用不同,基因库差异进一步加大;⑤经过漫长时间的进化,不同种群的基因库差异大到了出现生殖隔离。
08.任何一个物种都不是单独进化的(√)(判断对错)。
09.捕食者的存在有利于增加物种多样性。
0.不同物种之间、生物与无机环境之间在相互影响中不断进化和发展,这就是共同进化。通过漫长的共同进化过程,地球上不仅出现了千姿百态的物种,而且形成了多种多样的生态系统。
.生物多样性主要包括三个层次:基因多样性、物种多样性、生态系统多样性。
2.了解进化历程的主要依据是化石。
3.现代生物进化理论,其主要内容是:种群是生物进化的基本单位;突变和基因重组提供进化的原材料,自然选择导致种群基因频率的定向改变;通过隔离形成新的物种;
4.生物进化的过程实际上是生物与生物、生物与无机环境共同进化的过程,进化导致生物的多样性。
必修三教材知识点.在外界环境发生剧烈变化的情况下,人体仍能通过自身的调节作用,维持内环境的相对稳定。
2.细胞与环境之间不断进行着物质和能量的交换。
3.单细胞生物(如草履虫),可以直接从水里获取生存所必需的养料和氧,并把废物直接排入水中。
4.组成动物体的绝大多数细胞没有直接与外界环境接触,不能直接与外界环境进行物质交换。
5.细胞内液约占体液的三分之二,细胞外液占三分之一。
6.血液并不全是体液,血液既有液体部分血浆,也有大量的血细胞。
7.组织液是存在于组织细胞间隙的液体,又叫细胞间隙液,组织液是体内绝大多数细胞直接生活的环境。
8.血浆沿动脉流入毛细血管的动脉端,其中的许多物质会透过毛细血管壁进入组织液。组织液中包括细胞代谢产物在内的各种物质,大部分能够被毛细血管的静脉端重新吸收,进入血浆;小部分被毛细淋巴管吸收,成为淋巴。毛细淋巴管内的淋巴汇集到淋巴管中,经过淋巴循环由左右锁骨下静脉汇入血浆中,进入心脏,参与全身的血液循环。
9.手和脚有时会磨出“水泡”。“水泡”中的液体主要是组织液。
0.血浆中约90%为水;其余0%分别是:蛋白质(7%一9%),无机盐(约%),以及血液运送的物质——各种营养物质(如葡萄糖)、各种代谢废物、气体、激素等。非蛋白氮是非蛋白质类含氮化合物的总称,是蛋白质代谢的产物,包括尿素、肌酸、肌酐、氨基酸、多肽、胆红素和氨等。
.组织液、淋巴的成分和含量与血浆相近,但又不完全相同,最主要的差别在于血浆中含有较多的蛋白质,而组织液和淋巴中蛋白质含量很少。
2.渗透压是指溶液中溶质微粒对水的吸引力。溶液渗透压的大小取决于单位体积溶液中溶质微粒的数目:溶质微粒越多,即溶液浓度越高,对水的吸引力越大,溶液渗透压越高。
3.血浆渗透压的大小主要与无机盐、蛋白质的含量有关。细胞外液渗透压的90%以上来源于Na+和CI-。37℃时,人的血浆渗透压约为KPa,相当于细胞内液的渗透压。
4.血浆的pH之所以能够保持稳定,与它含有碳酸根、HPO42-等离子有关。
5.溶液酸碱度(pH)是指溶液中自由氢离子浓度的负对数,即pH=-lg[H+]。
6.细胞和内环境之间是相互影响、相互作用的。细胞不仅依赖于内环境,也参与了内环境的形成和维持。
7.健康人的内环境的每一种成分和理化性质都处于动态平衡中。
8.神经—体液—免疫调节网络是机体维持稳态的主要调节机制。机体的调节系统主要由三个,即神经系统、内分泌系统和免疫系统,三者具有共同的“语言”——信息分子。
9.当外界环境的变化过于剧烈,或人体自身的调节功能出现障碍时,内环境的稳态就会遭到破坏。
20.当内环境的稳态遭到破坏时,必将引起细胞代谢紊乱。
2.在分子水平上,存在基因表达的稳态;在器官水平上,存在心脏活动(血压、心率)的稳态等;在宏观水平上,种群数量的消长存在稳态现象,最大的生态系统——生物圈也存在稳态。可见在生命系统的各个层次上,都普遍存在着稳态现象。
22.血浆中的水来自:消化道、组织液、淋巴。
23.免疫系统既是机体的防御系统,也是维持稳态的调节系统。
24.人体生命活动的调节,神经系统扮演了主要角色。神经元的长的突起外表大都套有一层鞘,组成神经纤维。许多神经纤维集结成束,外面包着由结缔组织形成的膜,构成一条神经。
25.反射是指在中枢神经系统参与下,动物体或人体对内外环境变化作出的规律性应答。反射活动需要经过完整的反射弧来实现,若反射弧任何环节在结构和功能上受损,反射就就不能完成。膝跳反射需要两个神经元即可完成,而绝大多数反射活动都需要多个神经元参与;而且反射活动越复杂,参与的神经元越多。
26.效应器是指传出神经末梢和它所支配的肌肉或腺体等。
27.感受器的兴奋沿着传入神经向神经中枢传导;神经中枢随之产生兴奋并对传入的信息进行分析和综合;神经中枢的兴奋经过一定的传出神经到达效应器;效应器对刺激作出应答反应。这就是反射的大致过程。
28.兴奋是指动物体或人体内的某些组织(如神经组织)或细胞感受外界刺激后,由相对静止状态变为显著活跃状态的过程。
29.神经系统中,兴奋是以电信号的形式沿着神经纤维传导的,这种电信号也叫神经冲动。
30.未受到刺激时,神经纤维细胞膜两侧的电位表现为内负外正,这称为静息电位。
3.兴奋部位和未兴奋部位之间由于电位差的存在而发生电荷移动,这样就形成了局部电流。
32.神经细胞内K+浓度明显高于膜外,而Na+浓度比膜外低。
33.静息时,由于膜主要对K+有通透性,造成K+外流,使膜外阳离子浓度高于膜内,这是大多数神经细胞产生和维持静息电位的主要原因。
34.受到刺激时,细胞膜对Na+的通透性增加,Na+内流,使兴奋部位膜内侧阳离子浓度高于膜外侧。
35.神经元的轴突末梢经过多次分支,最后每个小枝末端膨大,呈杯状或球状,叫做突触小体。突触小体可以与其他神经元的细胞体、树突等相接触,共同形成突触。
36.神经递质经扩散通过突触间隙,然后与突触后膜上的特异性受体结合,引发突触后膜电位变化。
37.神经递质只存在于突触前膜的突触小泡中,只能由突触前膜释放,然后作用于突触后膜上,因此神经元之间兴奋的传递只能是单方向的。
38.在特定情况下,突触释放的神经递质,也能使肌肉收缩和某些腺体分泌。
39.目前已知的神经递质种类很多,主要有乙酰胆碱、多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、氨基酸类、一氧化氮等。
40.脊椎动物和人的中枢神经系统包括位于颅腔中的脑(大脑、脑干和小脑等)和脊柱椎管内的脊髓,它们含有大量的神经元,这些神经元组合成许多不同的神经中枢,分别负责调控某一特定的生理功能。
4.神经中枢的分布部位和功能各不相同,但彼此之间又相互联系,相互调控。一般来说,位于脊髓的低级中枢受脑中相应的高级中枢的调控。
42.位于大脑表层的大脑皮层,有40多亿个神经元,组成许多神经中枢,是整个神经系统中最高级的部位。大脑皮层除了对外部世界的感知以及控制机体的反射活动外,还具有语言、学习、记忆和思维等方面的高级功能。
43.语言功能是人脑特有的高级功能,涉及人类的听、写、读、说。
44.S区受损伤可导致运动性失语症。
45.学习和记忆是脑的高级功能之一,学习是神经系统不断地接受刺激,获得新的行为、习惯和积累经验的过程。记忆则是将获得的经验进行贮存和再现。
46.短期记忆主要与神经元的活动及神经元之间的联系有关,尤其是与大脑皮层下一个形状像海马的脑区有关。长期记忆可能与新突触的建立有关。
47.斯他林和贝利斯通过实验证明狗的小肠黏膜能分泌促胰液素,它是人们发现的第一种激素。
48.胰岛素是一种含5个氨基酸的蛋白质,而性激素主要是类固醇。
49.胰岛素能促进组织细胞加速摄取、利用和储存葡萄糖,从而使血糖水平降低;胰高血糖素能促进糖原分解,并促进一些非糖物质转化为葡萄糖,从而使血糖水平升高。
50.胰岛素和胰高血糖素的相互拮抗,共同维持血糖含量的稳定。血糖调节的过程中,胰岛素的作用结果会反过来影响胰岛素的分泌,胰高血糖素也是如此。
5.在一个系统中,系统本身工作的效果,反过来又作为信息调节该系统的工作,这种调节方式叫做反馈调节。反馈调节是生命系统中非常普遍的调节机制,它对于机体维持稳态具有重要意义。
52.甲状腺激素随血液运到全身,几乎作用于体内所有的细胞,提高细胞代谢的速率,使机体产生更多的热量。
53.甲状腺激素的分级调节,也存在着反馈调节机制。
54.激素调节的特点:①微量和高效;②通过体液运输;③作用于靶器官、靶细胞。
55.内分泌腺没有导管,分泌的激素弥散到体液中,随血液流到全身,传递着各种信息。
56.甲状腺激素几乎对全身的细胞都起作用,而促甲状腺激素只作用于甲状腺。能被特定激素作用的器官、细胞就是该激素的靶器官、靶细胞。
57.激素一经靶细胞接受并起作用后就被灭活了,因此,体内需要源源不断地产生激素,以维持激素含量的动态平衡。
58.激素种类多、量极微,既不组成细胞结构,又不提供能量,也不起催化作用,而是随体液到达靶细胞,使靶细胞原有的生理活动发生变化。激素是调节生命活动的信息分子。
59.人们给雌、雄亲鱼注射促性激素类药物,就能促使亲鱼的卵和精子成熟。
60.激素等化学物质(除激素以外,还有其他调节因子,如CO2等),通过体液传送的方式对生命活动进行调节,称为体液调节。激素调节是体液调节的主要内容。肾上腺的髓质分泌肾上腺素,它的分泌活动受内脏神经的直接支配。在恐惧、严重焦虑、剧痛、失血等紧急情况下,肾上腺素的分泌增多,人表现为警觉性提高、反应灵敏、呼吸频率加快、心跳加速等特征。
6.单细胞动物和一些多细胞低等动物只有体液调节。
62.人体热量的来源主要是细胞中有机物的氧化放能(尤以骨骼肌和肝脏产热为多),热量的散出主要通过汗液的蒸发、皮肤内毛细血管的散热,其次还有呼气、排尿和排便等。
63.水盐调节的机制非常复杂,涉及多种激素和神经的协调作用。课本仅以抗利尿激素及相关神经调节为例,探讨水盐平衡的维持。
64.不少内分泌腺本身直接或间接受中枢神经系统的调节,这种情况下,体液调节可以看做神经调节的一个环节。另一方面,内分泌腺所分泌的激素可以影响神经系统的发育和功能,如幼年时甲状腺激素缺乏(如缺碘),就会影响脑的发育;成年时,甲状腺激素分泌不足会使神经系统的兴奋性降低。
65.神经调节和体液调节并不能直接消灭入侵的病原体;也不能直接清除体内出现的衰老、破损或异常细胞。
66.免疫系统包括免疫器官、免疫细胞和免疫活性物质。免疫细胞包括淋巴细胞和吞噬细胞等。免疫活性物质包括抗体、溶菌酶、淋巴因子等。免疫活性物质是由免疫细胞或其他细胞产生的发挥免疫作用的物质。
67.免疫器官是免疫细胞生成、成熟和集中分布的地方。淋巴细胞位于淋巴液、血液和淋巴结中。
68.皮肤、黏膜是保卫人体的第一道防线;体液中的杀菌物质(如溶菌酶)和吞噬细胞是保卫人体的第二道防线。这两道防线人人生来就有,也不针对某一类特定病原体,而是对多种病原体都有防御作用,因此叫做非特异性免疫。多数情况下,这两道防线可以防止病原体对机体的侵袭。
69.第三道防线主要是由免疫器官和免疫细胞借助血液循环和淋巴循环而组成的。
70.艾滋病是一种免疫缺陷病,又叫获得性免疫缺陷综合征,是由人类免疫缺陷病毒(HIV)引起的,死亡率极高。艾滋病病人的直接死因,往往是由念珠菌、肺囊虫等多种病原体引起的严重感染或恶性肿瘤等疾病。
7.HIV病毒最初侵入人体时候,免疫系统可以摧毁大多数病毒。HIV侵入人体后,T细胞的数量先增多后减少。HIV可导致患者的免疫能力几乎全部丧失。
72.能够引起机体产生特异性免疫反应的物质叫做抗原。病毒、细菌等病原体表面的蛋白质等物质,都可以作为引起免疫反应的抗原。
73.第三道防线的“作战部队”主要是众多的淋巴细胞。其中B细胞主要靠产生抗体“作战”,这种方式称为体液免疫;
T细胞主要靠直接接触靶细胞“作战”,这种方式称为细胞免疫。
74.大多数病原体经过吞噬细胞等的摄取和处理,暴露出这种病原体所特有的抗原,将抗原传递给T细胞,刺激T
细胞产生淋巴因子。
75.B细胞受到刺激后,在淋巴因子的作用下,开始一系列的增殖、分化,大部分分化为浆细胞,产生抗体,小部分形成记忆细胞。
76.抗体可以与病原体结合,从而抑制病原体的繁殖或对人体细胞的黏附。在多数情况下,抗原、抗体结合后会发生进一步的变化,如形成沉淀或细胞集团,进而被吞噬细胞吞噬消化。
77.记忆细胞可以在抗原消失后很长时间内保持对这种抗原的记忆,当再次接触这种抗原时,能迅速增殖分化,快速产生大量的抗体。
78.结核杆菌、麻风杆菌等,是寄生在宿主细胞内的,而抗体不能进入宿细胞。
79.细胞免疫的大致过程:T细胞在接受抗原的刺激后,通过分化形成效应T细胞,效应T细胞可以与被抗原入侵的宿主细胞密切接触,使这些细胞裂解死亡。病原体失去了寄生的基础,因而能被吞噬、消灭。
80.免疫系统异常敏感、反应过度,“敌我不分”地将自身物质当做外来异物进行攻击而引起的,这类疾病就是自身免疫病。
8.引起过敏反应的抗原物质叫做过敏原,如花粉、室内尘土、鱼、虾、牛奶、蛋类、青霉素、磺胺、奎宁、宠物的皮屑、羽毛、棉絮等。
82.过敏反应是指已产生免疫的机体,在再次接受相同的抗原时所发生的组织损伤或功能紊乱。反应的特点是:发作迅速、反应强烈、消退较快;一般不会破坏组织细胞,也不会引起组织严重损伤;有明显的遗传倾向和个体差异。
83.免疫系统除了具有防卫功能外,还有监控和清除功能:监控并清除体内已经衰老或因其他因素而被破坏的细胞,以及癌变的细胞。艾滋病病人由于免疫功能缺失,所以恶性肿瘤的发病率大大升高。
84.免疫系统正是通过它的防卫功能、监控和清除功能,实现它在维持稳态中的作用。一旦免疫系统出现障碍,机体的内环境就会受到破坏,表现为各种各样的免疫系统疾病。
85.在各种疾病的临床检测和科学研究中,根据抗原能和特异性抗体相结合的特性,用人工标记的抗体对组织内的抗原进行检测,可以帮助人们发现体内组织中的抗原。
86.一些药物,如类固醇、环孢霉素A等,可以使T细胞的增殖受阻,从而使免疫系统暂时处于无应答或弱应答状态。这些药物的运用,可提高移植器官的成活率。
87.艾滋病主要通过性接触、血液和母婴三种途径传播。共用注射器吸毒和性滥交是传播艾滋病的主要危险行为。
88.脑和脊髓中有控制机体各种活动的神经中枢。神经系统调节人体呼吸频率的中枢位于脑干。
89.激素分泌的调节,存在着下丘脑一垂体一内分泌腺的分级调节和反馈调节。神经调节和体液调节紧密联系、密切配合,相互影响。免疫调节在维持稳态过程中也具有重要作用,并与神经调节和体液调节构成完整的调节网络。特异性免疫主要通过淋巴细胞发挥作用。
90.模型方法是现代科学方法的核心内容之一。模型包括物理模型、数学模型和概念模型等类型。“建立血糖调节的模型”,模拟活动本身就是在构建动态的物理模型,之后,再根据活动中的体会构建概念模型。
9.新生儿在出生后六个月内一般不易生某些传染病,这是因为在胎儿期从母体血液中就获得了抗体。
92.在单侧光的照射下,植物朝向光源方向生长的现象叫做向光性。
93.单子叶植物,特别是禾本科植物胚芽外的锥形套状物叫做胚芽鞘。它能保护生长中的胚芽。种子萌发时,胚芽鞘首先钻出地面,出土后还能进行光合作用。
94.达尔文根据实验提出,胚芽鞘尖端受单侧光刺激后,就向下面的伸长区传递某种“影响”,造成伸长区背光面比向光面生长快,因而使胚芽鞘出现向光性弯曲。
95.詹森的实验证明,胚芽鞘尖端产生的影响可以透过琼脂片传递给下部。
96.拜尔的实验证明,胚芽鞘的弯曲生长,是由于尖端产生的影响在其下部分布不均匀而造成的。
97.温特的实验进一步证明胚芽鞘的弯曲生长确实是一种化学物质引起的。温特认为这可能是一种和动物激素类似的物质,并把这种物质命名为生长素。
98.科学家首先从人尿中分离出具有生长素效应的化学物质——吲哚乙酸(IAA)。植物体内具有生长素效应的物质,除IAA外,还有苯乙酸(PAA)、吲哚丁酸(IBA)等。
99.由植物体内产生,能从产生部位运送到作用部位,对植物的生长发育有显著影响的微量有机物,称作植物激素。植物体内没有分泌激素的腺体,这说明植物激素至少在合成部位上与动物激素有明显不同。
00.生长素主要的合成部位是幼嫩的芽、叶和发育中的种子。在这些部位,色氨酸经过一系列反应可转变成生长素。
0.在胚芽鞘、芽、幼叶和幼根中,生长素只能从形态学上端运输到形态学下端,而不能反过来运输,也就是只能单方向地运输,称为极性运输。在成熟组织中,生长素可以通过韧皮部进行非极性运输。
02.极性运输是细胞的主动运输。
03.生长素在植物体各器官中都有分布,但相对集中地分布在生长旺盛的部分。
04.生长素不直接参与细胞代谢,而是给细胞传达一种调节代谢的信息。
05.生长素的作用表现出两重性:既能促进生长,也能抑制生长;既能促进发芽,也能抑制发芽;既能防止落花落果,也能疏花疏果。
06.生长素所发挥的作用,因浓度、植物细胞的成熟情况和器官的种类不同而有较大的差异。
07.一般情况下,生长素在浓度较低时促进生长;在浓度过高时则会抑制生长,甚至杀死植物。幼嫩的细胞对生长素敏感,老细胞则比较迟钝;不同器官对生长素的反应敏感程度也不一样。
08.顶芽产生的生长素逐渐向下运输,枝条上部的侧芽附近生长素浓度较高。由于侧芽对生长素浓度比较敏感,因此它的发育受到抑制,植株因而表现出顶端优势。去掉顶芽后,侧芽附近的生长素来源暂时受阻,浓度降低,于是抑制就被解除。
09.适时摘除棉花的顶芽,解除顶端优势,以促进侧芽的发育,从而使它多开花、多结果。
0.人工合成的化学物质,如α-萘乙酸(NAA)、2,4-D等,具有与IAA相似的生理效应。这些化学物质,称为生长素类似物,可用于防止果实和叶片的脱落、促进结实、获得无子果实、促使扦插枝条的生根等。
.预实验可以为进一步的实验摸索条件,也可以检验实验设计的科学性和可行性,以免由于设计不周,盲目开展实验而造成人力、物力和财力的浪费。生长素类似物处理插条的方法:
浸泡法:要求溶液浓度较低,处理几小时至一天,最好在遮阴和空气湿度较高的地方;沾蘸法:把插条基部在浓度较高的药液中蘸一下(约5s),深约.5cm即可。
2.科学家从培养赤霉菌的培养基滤液中分离出致使水稻患恶苗病的物质,称之为赤霉素(简称GA)。
3.除了已经介绍的5类植物激素外,植物体内还有一些天然物质也在调节着生长发育过程,如油菜素。
4.赤霉素:促进细胞伸长,引起植株增高;促进种子萌发和果实发育。细胞分裂素的合成部位主要是根尖;主要作用是促进细胞分裂。脱落酸的主要作用是抑制细胞分裂,促进叶和果实的衰老和脱落。乙烯的合成部位是植物体的各个部位,主要作用是促进果实成熟。
5.科学家在对黄化豌豆幼苗切段的实验研究中发现,低浓度的生长素促进细胞的伸长,但生长素浓度增高到一定值时,就会促进切段中乙烯的合成,而乙烯含量的增高,反过来又抑制了生长素促进切段细胞伸长的作用。
6.激素调节只是植物生命活动调节的一部分。植物的生长发育过程,在根本上是基因组在一定时间和空间上程序性表达的结果。光照、温度等环境因子的变化,会引起植物体内产生包括植物激素合成在内的多种变化,进而对基因组的表达进行调节。
7.人工合成的对植物的生长发育有调节作用的化学物质称为植物生长调节剂。生长素类似物也是植物生长调节剂。植物生长调节剂具有容易合成、原料广泛、效果稳定等优点。
8.用乙烯利催熟凤梨,就可以做到有计划地上市;在芦苇生长期用一定浓度的赤霉素溶液处理,就可以使芦苇的纤维长度增加。用赤霉素处理大麦,可以使大麦种子无须发芽就可以产生α一淀粉酶。
9.可以延长马铃薯、大蒜、洋葱贮藏期的青鲜素(抑制发芽)可能有致癌作用。
20.植物激素自身的合成也是受基因组控制的。许多研究表明:脱落酸在高温条件下容易降解。小麦、玉米在即将成熟时,如果经历持续一段时间的干热之后又遇大雨天气,种子就容易在穗上发芽。
2.①植物激素几乎控制着植物所有的生命活动。②在植物的生长发育过程中,几乎所有生命活动都受到植物激素的调节。②更准确。①过于绝对,植物生命活动的调节是非常复杂的过程,从根本上说是由基因控制的,环境变化也会影响基因的表达,激素调节只是其中的一种调节方式。
22.种群在单位面积或单位体积中的个体数就是种群密度。种群密度是种群最基本的数量特征。
23.在调查分布范围较小、个体较大的种群时,可以逐个计数。但是,在多数情况下,逐个计数非常困难,需要采取估算的方法。估算种群密度最常用的方法之一是样方法。
24.单子叶草本植物常常是丛生或蔓生的,从地上部分难以辨别是一株还是多株。而双子叶草本植物则容易辨别个体数目。
25.取样的关键是要做到随机取样,不能掺人主观因素。五点取样法和等距取样法都是常用的取样方法。
26.调查某种昆虫卵的密度,作物植株上蚜虫的密度、跳蝻的密度等,也可以采用样方法。对于有趋光性的昆虫,还可以用黑光灯进行灯光诱捕的方法调查它们的种群密度。
27.许多动物的活动能力强,活动范围大,不宜用样方法来调查它们的种群密度。常用的方法之一是标志重捕法。
28.出生率是指在单位时间内新产生的个体数目占该种群个体总数的比率。例如,年,我国平均每0万人中出生个孩子,我国人口在这一年的出生率就是.%。
29.种群的年龄结构是指一个种群中各年龄期的个体数目的比例。
30.性别比例是指种群中雌雄个体数目的比例。性别比例对种群密度也有一定的影响。
3.组成种群的个体,在其生活空间中的位置状态或布局叫做种群的空间特征。种群常见的空间特征有均匀分布、随机分布和集群分布。
32.数学模型是用来描述一个系统或它的性质的数学形式。曲线图是数学模型的另一种表现形式。同数学方程式相比,它能更直观地反映出种群数量的增长趋势。建立数学模型一般包括以下步骤:观察研究对象,提出问题;提出合理假设;根据实验数据,用适当的数学形式对事物的性质进行表达;通过进一步实验和观察等,对模型进行检验和修正。
33.在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量称为环境容纳量,又称K值。
34."J”型增长模型的模型假设:在食物和空间条件充裕、气候适宜、没有敌害等条件下,种群的数量每年以一定的倍数增长,第二年的数量是第一年的λ倍。建立模型:t年后种群数量为:Nt=N0λt。
35.自然界的资源和空间总是有限的,当种群密度增大时,种内竞争就会加剧,以该种群为食的动物的数量也会增加,这就会使种群的出生率降低,死亡率增高。当死亡率增加到与出生率相等时,种群的增长就会停止,有时会稳定在一定的水平。
36.大熊猫栖息地遭到破坏后,由于食物的减少和活动范围的缩小,其K值就会变小。这是大熊猫种群数量锐减的重要原因。因此,建立自然保护区,给大熊猫更宽广的生存空间,改善它们的栖息环境,从而提高环境容纳量,是保护大熊猫的根本措施。
37.对一支试管中的培养液中的酵母菌逐个计数是非常困难的,可以采用抽样检测的方法:先将盖玻片放在计数室上,用吸管吸取培养液,滴于盖玻片边缘,让培养液自行渗入。多余培养液用滤纸吸去。稍待片刻,待酵母菌细胞全部沉降到计数室底部,再计数。
38.种群是一个系统,种群水平的研究集中于种群的数量动态,包括出生率、死亡率、年龄组成、性别比例等。群落是更高层次的系统,在群落水平上研究的是另外一些问题,例如:群落的丰富度、优势种、种间关系、群落的结构、群落的演替、群落的范围和边界等。
39.群落中物种数目的多少称为丰富度。越靠近热带地区,单位面积内的物种越丰富。
40.捕食:一种生物以另一种生物作为食物。竞争:两种或两种以上的生物相互争夺资源与空间等。竞争的结果常表现为相互抑制,有时表现为一方占优势,一方占劣势甚至灭亡。寄生:一种生物(寄居者)寄居于另一种生物(寄主)的体内或体表,摄取寄主的养分以维持生活。互利共生:两种生物共同生活在一起,相互依存,彼此有利。例如,豆科植物供给根瘤菌有机养料,根瘤菌则将空气中的氮转变为含氮养料,供植物利用。
4.在群落中,各个生物种群分别占据了不同的空间,使群落形成一定的空间结构。
42.在垂直方向上,大多数群落都具有明显的分层现象。森林植物的分层与对光的利用有关。垂直结构显著提高了群落利用阳光等环境资源的能力。
43.群落中植物的垂直结构又为动物创造了多种多样的栖息空间和食物条件,因此,动物也有类似的分层现象。
44.草地在水平方向上,由于地形的变化、土壤湿度和盐碱度的差异、光照强度的不同、生物自身生长特点的不同,以及人与动物的影响等因素,不同地段往往分布着不同的种群,同一地段上种群密度也有差别,它们常呈
镶嵌分布。
45.土壤小动物对动植物遗体的分解起着重要的辅助作用。许多土壤动物有较强的活动能力,而且身体微小,因此不适于用样方法或标志重捕法进行调查。常用取样器取样的方法进行釆集、调查。即用一定规格的捕捉器(如采集罐、吸虫器等)进行取样,通过调查样本中小动物的种类和数量来推测某一区域内土壤动物的丰富度。
46.丰富度的统计方法通常有两种:一是记名计算法;二是目测估计法。记名计算法是指在一定面积的样地中,直接数出各种群的个体数目,这一般用于个体较大,种群数量有限的群落。目测估计法是按预先确定的多度等级来估计单位面积上个体数量的多少。等级的划分和表示方法有:“非常多、多、较多、较少、少、很少”等等。
47.立体农业:运用群落的空间结构原理,为充分利用空间和资源而发展起来的一种农业生产模式。如,果树-草菇结构;桉树-菠萝结构。
48.随着时间的推移一个群落被另一个群落代替的过程,就叫做演替。裸岩上的演替要经历地衣阶段、苔藓阶段、草本植物阶段、灌木阶段、森林阶段。乔木比灌木具有更强的获得阳光的能力,因而最终占据了优势,成为茂盛的树林。
49.如果是在干旱的荒漠地区,群落的演替就很难形成树林,或许只发展到草本植物阶段或稀疏的灌木阶段。
50.初生演替是指在一个从来没有被植物覆盖的地面,或者是原来存在过植被,但被彻底消灭了的地方发生的演替。例如在沙丘、火山岩、冰川泥上进行的演替。次生演替是指在原有植被虽已不存在,但原有土壤条件基本保留,甚至还保留了植物的种子或其他繁殖体的地方发生的演替,如火灾过后的草原、过量砍伐的森林、弃耕的农田上进行的演替。
5.人类活动往往会使群落演替按照不同于自然演替的速度和方向进行。在我国,退耕还林、还草、还湖,退牧还草是一项功在当代、惠及子孙的生态工程。
52.种群是由同种生物的个体在一定自然区域内组成的群体,并出现个体层次上所没有的一系列特征。影响种群数量的因素很多,因此种群的数量常常出现波动,在不利条件下,种群数量会急剧下降甚至消亡。
53.生态系统类型众多,一般可分为自然生态系统和人工生态系统两大类。自然生态系统又可分为水域生态系统和陆地生态系统。人工生态系统又可分为农田生态系统、人工林生态系统、果园生态系统、城市生态系统。
54.生产者可以说是生态系统的基石。消费者能够加快生态系统的物质循环。此外,消费者对于植物的传粉和种子的传播等具有重要作用。分解者能将动植物遗体和动物的排遗物分解成无机物。因此,生产者、消费者和分解者是紧密联系,缺一不可的。
55.食物链共有五个环节,也就是有五个营养级。各种动物所处的营养级并不是一成不变的。
56.食物链和食物网是生态系统的营养结构,生态系统的物质循环和能量流动就是沿着这种渠道进行的。
57.生态系统中能量的输入、传递、转化和散失的过程,称为生态系统的能量流动。
58.几乎所有的生态系统所需要的能量都来自太阳。太阳每天输送到地球的能量大约为×09kJ,这些能量绝大部分都被地球表面的大气层所吸收、散射和反射掉,大约只有%以可见光的形式被生产者通过光合作用转化为化学能,固定在它们所制造的有机物种。这样,太阳能就输入到了生态系统的第一营养级。
59.输入第一营养级的能量,一部分在生产者的呼吸作用中以热能的形式散失了;一部分用于生产者的生长、发育和繁殖等生命活动,储存在植物体的有机物中。构成植物体的有机物中的能量,一部分随着残枝败叶等被分解者分解而释放出来;另一部分则被初级消费者摄入体内,这样,能量就流入了第二营养级。
60.根据热力学第二定律,在封闭系统中,随着时间的推移无序性将增加。生命系统是开放系统,可以通过获取能量来维持系统的有序性。
6.“未利用”是指未被自身呼吸作用消耗,也未被后一个营养级和分解者利用的能量。
62.生态系统的能量流动具有两个明显的特点:①生态系统中能量流动是单向的。②能量在流动过程中逐级递减。
63.一般来说,在输入到某一个营养级的能量中,只有0%—20%的能量能够流到下一个营养级,也就是说,能量在相邻两个营养级间的传递效率大约是0%—20%。
64.从能量金字塔可以看出,在一个生态系统中,营养级越多,在能量流动过程中消耗的能量就越多。生态系统中的能量流动一般不超过4—5个营养级。
65.任何生态系统都需要不断得到来自系统外的能量补充,以便维持生态系统的正常功能。如果一个生态系统在一段较长时期内没有能量(太阳能或现成有机物质)输入,这个生态系统就会崩溃。
66.研究生态系统的能量流动的意义:
①实现对能量的多级利用,从而大大提高能量的利用率。沼气池和“桑基鱼塘”都体现了这个原理;②调整生态系统中的能量流动关系,使能量持续高效地流向对人类最有益的部分。
67.生态系统中能量多级利用和物质循环再生是生态学的一条基本原理。在生态系统中,能量流动和物质循环主要是通过食物链来完成的。食物链既是一条能量转换链,也是一条物质传递链,从经济上看还是一条价值增值链。因此,遵循这一原理,就可以合理设计食物链,使生态系统中的物质和能量被分层次多级利用,使生产一种产品时产生的有机废弃物,成为生产另一种产品的投入,也就是使废物资源化,以便提高能量
转化效率,减少环境污染。
68.生态系统依靠太阳不断地提供能量,而生态系统中的物质却都是由地球提供的。
69.碳在生物群落与无机环境之间的循环主要是以二氧化碳的形式进行的。大气中的二氧化碳能够随着大气环流在全球范围内流动,因此,碳循环具有全球性。
70.组成生物体的C,H,O,N,P,S等元素,都不断进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程,这就是生态系统的物质循环。这里所说的生态系统,指的是地球上最大的生态系统—生物圈,其中的物质循环具有全球性,因此又叫生物地球化学循环。
7.在自然生态系统中,植物通过光合作用从大气中摄取碳的速率,与通过生物的呼吸作用和分解作用而把碳释放到大气中的速率大致相同。
72.由于各地气候与环境等因素不同,落叶在土壤中被分解的时间也是不同的。
73.落叶是在土壤微生物的作用下腐烂的吗?以带有落叶的土壤为实验材料。采用对照实验的办法,设计实验组和对照组。对照组的土壤不做处理(自然状态);实验组的土壤要进行处理,以尽可能排除土壤微生物的作用,同时要尽可能避免土壤理化性质的改变(例如,将土壤用塑料袋包好,放在60℃恒温箱h灭菌)。
74.能量流动和物质循环是生态系统的主要功能,二者同时进行,彼此相互依存,不可分割。
75.能量的固定、储存、转移和释放,都离不开物质的合成和分解等过程。物质作为能量的载体,使能量沿着食物链(网)流动;能量作为动力,使物质能够不断地在生物群落和无机环境之间循环往返。生态系统中的各种组成成分,正是通过能量流动和物质循环,才能够紧密地联系在一起,形成一个统一的整体。
76.生态系统中的光、声、温度、湿度、磁力等,通过物理过程传递的信息,称为物理信息。物理信息的来源可以是无机环境,也可以是生物。
77.生物在生命活动过程中,还产生一些可以传递信息的化学物质,诸如植物的生物碱、有机酸等代谢产物,以及动物的性外激素等,这就是化学信息。
78.动物的特殊行为,对于同种或异种生物也能够传递某种信息,即生物的行为特征可以体现为行为信息。
79.生命活动的正常进行,离不开信息的作用;生物种群的繁衍,也离不开信息的传递。信息还能够调节生物的种间关系,以维持生态系统的稳定(例如,在草原上,当草原返青时,“绿色”为食草动物提供了可以采食的信息;森林中,狼能够依据兔留下的气味去猎捕后者,兔同样也能够依据狼的气味或行为特征躲避猎捕)。
80.信息传递在农业生产中的应用有两个方面:一是提高农产品或畜产品的产量;二是对有害动物进行控制。
8.利用模拟的动物信息吸引大量的传粉动物,就可以提高果树的传粉效率和结实率。
82.目前控制动物危害的技术大致有化学防治、生物防治和机械防治等。这些方法各有优点,但是目前人们越来越倾向于利用对人类生存环境无污染的生物防治。
83.生物防治中有些就是利用信息传递作用。例如,利用音响设备发出结群信号吸引鸟类,使其结群捕食害虫;利用昆虫信息素诱捕或警示有害动物,降低害虫的种群密度。人们还可以利用特殊的化学物质扰乱某些动物的雌雄交配,使有害动物种群的繁殖力下降,从而减少有害动物对农作物的破坏。
84.生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,叫做生态系统的稳定性。生态系统之所以能维持相对稳定,是由于生态系统具有自我调节能力。
85.当河流受到轻微的污染时,能通过物理沉降、化学分解和微生物的分解,很快消除污染,河流中的生物种类和数量不会受到明显的影响。负反馈调节在生态系统中普遍存在,它是生态系统自我调节能力的基础。
86.生态系统的自我调节能力不是无限的。当外界干扰因素的强度超过一定限度时,生态系统的自我调节能力会迅速丧失,这样,生态系统就到了难以恢复的程度。
87.生态系统抵抗外界干扰并使自身的结构与功能保持原状(不受损害)的能力,叫做抵抗力稳定性;生态系统在受到外界干扰因素的破坏后恢复到原状的能力,叫做恢复力稳定性。
88.一般来说,生态系统中的组分越多,食物网越复杂,其自我调节能力就越强,抵抗力稳定性就越高。
89.生态系统在受到不同的干扰(破坏)后,其恢复速度与恢复时间是不一样的。
90.提高生态系统的稳定性,一方面要控制对生态系统干扰的程度,对生态系统的利用应该适度,不应超过生态系统的自我调节能力;另一方面,对人类利用强度较大的生态系统,应实施相应的物质、能量投入,保证生态系统内部结构与功能的协调。
9.要使人工微生态系统(生态缸)正常运转,在设计时要考虑系统内不同营养级生物之间的合适比例。应该注意,人工生态系统的稳定性是有条件的,也可能是短暂的。
92.封上生态缸盖。将生态缸放置于室内通风、光线良好的地方,但要避免阳光直接照射。
93.恢复生态学的目标是,重建某一区域历史上曾有的植物和动物群落,使这一区域生态系统的结构与功能恢复到(或接近)受干扰前的原状。
94.恢复生态学主要利用的是生物群落演替理论,特别强调生态系统的自我调节能力与生物的适应性,充分依靠生态系统自身的能力,并辅以有效的人为手段(物质、能量的投入),从而尽快使生态系统从受损的退化状态恢复到正常的健康状态。
95.全球性生态环境问题主要包括全球气候变化、水资源短缺、臭氧层破坏、酸雨、土地荒漠化、海洋污染和生物多样性锐减等。
96.生物圈内所有的植物、动物和微生物,它们拥有的全部基因以及各种各样的生态系统,共同构成了生物多样性。
97.生物多样性的价值:一是目前人类尚不清楚的潜在价值;二是对生态系统起到重要调节功能的间接价值(也叫做生态功能,如森林和草地对水土的保持作用,湿地在蓄洪防旱、调节气候等方面的作用;三是对人类有食用、药用和工业原料等实用意义的,以及有旅游观赏、科学研究和文学艺术创作等非实用意义的直接价值。生物多样性的间接价值明显大于它的直接价值。
98.就地保护是指在原地对被保护的生态系统或物种建立自然保护区以及风景名胜区等,这是对生物多样性最有效的保护。易地保护是指把保护对象从原地迁出,在异地进行专门保护。例如,建立植物园、动物园以及濒危动植物繁育中心等,这是为行将灭绝的物种提供最后的生存机会。此外,建立精子库、种子库等,利用生物技术对濒危物种的基因进行保护,等等,也是对濒危物种保护的重要措施。近些年来,我国科学家还利用人工授精、组织培养和胚胎移植等生物技术,加强对珍稀、濒危物种的保护,取得了可喜的成绩。
99.保护生物多样性,关键是要协调好人与生态环境的关系,如控制人口的增长、合理利用自然资源、防治环境污染等。保护生物多样性,还要加强立法、执法和宣传教育,使每个人都理性地认识到保护生物多样性的意义。保护生物多样性只是反对盲目地、掠夺式地开发利用,而不意味着禁止开发和利用。
.可持续发展的含义是“在不牺牲未来几代人需要的情况下,满足我们这代人的需要”,它追求的是自然、经济、社会的持久而协调的发展。
预览时标签不可点